

I-66 Pavement Rehabilitation

Fall Asphalt Conference Richmond, VA

David Shiells, P.E.
Virginia Department of Transportation

David WhiteSuperior Paving Corporation

October 2, 2012

Project Location

Goal

Provide a cost effective pavement rehabilitation that will last for
 20 years with minimum disruption to the traveling public

Challenges for Pavement Rehabilitation

- Limited space for Maintenance of Traffic (MOT)
- Limited times for dual lane closures
- Limited overhead clearance for existing bridges
- Drainage
- Concrete barriers
- Lane shifts across longitudinal joints in concrete
- Coordination with adjacent Mega Projects

Pavement Structure

Original Construction, 1960 to 1963

- 9" concrete pavement, wire mesh reinforcement, 61.5' transverse joint spacing
- 6" plain aggregate
- 6" soil cement
- 20-year design life; design ADT was 22,350 vpd

Widening, 1990 to 1993

- Original 2 lanes widened to 4 lanes (Route 50 to east of Route 123)
- 3 lanes widened to 4 lanes (east of Route 123 to I-495)
- Outside shoulder used as fourth lane during peak demand periods
- 11" concrete pavement, 15' transverse joint spacing
- 4" Stabilized open graded drainage layer
- 6" Cement treated aggregate (CTA)

Pavement Condition

Summary of Condition Data

Average CCI of 58 in 2007; range from 13 to 86

36,500 sy of patching mainline; 9,850 sy of patching on ramps/loops/CD

roads

 Distresses concentrated in distinct areas

 15% of transverse joints failing in load transfer based on 1995 FWD testing

Courtesy: American Concrete Pavement Association "Concrete Paving: Pavement Rehabilitation Strategy Selection"

Pavement Condition

Old Pavement in Poor Condition

- Approximately 20% of total pavement area in poor condition
- Distresses generally at transverse joints
- Isolated slabs have distress (spalling) throughout

Pavement Condition

- Significant Amount of Good Pavement
- Some pavement is in good condition
- Some patches in good condition
- Pavement in good condition between transverse joints

Challenges for Pavement Rehabilitation

- Limited Space for Maintenance of Traffic
- Outside shoulder is currently used as travel lane in peak hours (5:30 am to 11:00 am EB and 2:00 pm to 8:00 pm WB)
- Inside shoulder is only 2'-8' wide
- No shoulders at some bridge locations; no shoulders on CD road at Nutley Street (retaining walls)

Challenges for Pavement Rehabilitation

- Limited Times for Dual Lane Closures
- Weekdays 10:00 pm to 5:00 am (EB)/6:00 am (WB)
- Saturday and Sunday 7:00 pm to 9:00 am

Challenges for Pavement Rehabilitation

Hourly Traffic Volumes

Challenges for Pavement Rehabilitation

 Limited Overhead Clearance for Existing Bridges

Challenges for Pavement Rehabilitation

- Drainage
- Inlets extend into shoulder travel lane

Challenges for Pavement Rehabilitation

- Concrete Barriers
- Median and WMATA (5 miles "locked in")

Challenges for Pavement Rehabilitation

 Lane shifts across Longitudinal Joints in Concrete

Challenges for Pavement Rehabilitation

Co-ordination with adjacent Mega Projects

- I-495 HOT Lanes
- Dulles Rail

Project Approach

Development

- Met with industry associations (concrete and asphalt) on May 20, 2008
- Received industry suggestions/proposals on June 18, 2008
- Provided follow-up comments to industry
- Follow-up details received from industry on June 23 and June 24, 2008
- Performed comparison of alternatives
- Project was funded and advertised in September, 2010
- Delivery mechanism was design-build (pavement repairs specifically identified on RFP plans)
- Awarded to Fort Myer Construction Company on December 20, 2010
- Total Contract Amount \$37.9 million

Scope of Work

- Patch badly deteriorated concrete pavement with full-depth concrete patches and seal joints
- Patch minor spalling with asphalt
- Seal joints, eradicate pavement markings, remove snow plowable raised pavement markers
- 4 Place 5/8" Thin Hot Mix Asphalt Concrete Overlay stress absorbing membrane interface layer
- **5** 2" SMA-12.5 (PG 76-22, polymer modified)
- **6** 1-1/2" SMA-9.5 (PG 76-22, polymer modified)
- 7 3/8" High Friction Surface Course to delineate auxiliary travel lane

Scope of Work

- Issues:
- All existing barriers (both WMATA and median) have 2" reveal; reconstruct/re-face existing barriers but not WMATA barrier due to modifications required for existing drainage inlet throats
- Existing cross slope on auxiliary travel lane varied up to 8.3%; bring this up to standard (except at tapers beneath existing bridges)
- Design exception for cross slope up to 12.6% on inside shoulder
- Taper build-up to zero beneath low clearance bridges; survey and drainage analysis needed
- Adjust drainage inlets and grates in auxiliary shoulder lane

Concrete Patching

- Extremely rough pavement with failed patches and joints
- Full depth concrete patches

Concrete Patching

Patch minor spalls with asphalt or partial depth patches

Concrete Patching

- Total 55,572 sy full-depth (12,004 EB; 36,214 WB; 7,355 on Ramps)
- 4,697 sy partial depth

THMACO

- Pavement surface very rough after concrete patches
- Spray bar paver
- Heavy tack

SMA Overlay

- 2" SMA-12.5 (76-22)
- Scratch course for leveling
- 1.5" SMA-9.5 (76-22)

Transitions

- Begin/end of overlay
- Beneath low clearance bridges
- Highways for Life section of post-tensioned pavement

Concrete Jersey Barrier

- Retrofit 23,600 If with constant slope barrier
- Slip-form over existing barrier
- Drainage inlets required special formwork

Final Rideability

Average IRI (ins/mi.)					
Lane	EB	WB			
1	50	48			
2	49	48			
3	46	46			
4		48			

Note: project design-build specification required average IRI < 70 ins./mi. with no individual 0.01 mile section >80 ins./mi.

High Friction Surface Course

 Delineate part-time shoulder pavement with a different color as a safety improvement

Delivered Fall 2012...

...a safer, and smoother, I-66!

